En af de store glæder ved at arbejde i et eksperimentelt laboratorium er de mange instrumenter og dimser man får lov at arbejde med. Selvom et instrument jo er et middel og ikke et mål er nogle af dem nu alligevel så fantastiske, at de fortjener omtale. I dag vil jeg viser jer et af mine absolutte yndlingsinstrumenter, nemlig vores Time-of-Flight massespektrometer.
Et massespektrometer er et apparat som kan skelne forskellige typer af molekyler og på den måde give en beskrivelse af hvilken sammensætning man har i den gas man ønsker at undersøge. Dette kan anvendes til alt fra læksøgning af et vakummkammer til avanceret analyse af kemiske stoffer. I vores lab anvendes i stor stil massespektrometre til at påvise omdannelse af kemiske stoffer under katalytiske reaktioner.
Inspireret af Jonas’ indlæg som viser en film af hvordan solsystemet ser ud set fra en rumsonde fik jeg lyst til at lave det samme visualisering af hvordan en ion oplever sin begivenhedsrige tur gennem et massespektrometer. Desværre har jeg ikke kunne finde sådan en film, så I må i stedet tage til takke med mit ydmyge forsøg på at beskrive turen.
Forestil dig, at du er et molekyle, lad os for nemheds skyld antage, at du er en ædelgas, hvis du føler dig ganske særlig og enestående kunne du forestille dig, at du et et Xenon atom, føler du dig mere gennemsnitlig og almindelig kan du være et Argon atom. Som et neutralt atom bevæger du dig omkring i et relativt kaotisk mønster hvor du konstant flyver fra den ene væg til den anden.
For at fungere må et massespektrometer operere i et relativt højt vakuum; hvis trykket er for højt vil de enkelte gasmolekyler ramme hinanden, og det bliver umuligt at styre ionerne gennem den relativt komplicerede rute de skal igennem for, at vi kan opnå den ønskede masseseparation. En betingelse for at kunne håndtere gassen på en kontrolleret måde er, at vi kan ionisere den, dette foregår i ioniseringskilden:
Pludselig og uden varsel oplever du, at en elektron rammer dig meget hårdt! Efter at have sundet dig et kort øjeblik oplever du til din skræk at kollisionen har frarøvet dig en af dine elektroner – du er blevet til en ion. I dit nye liv som ion er dit bevægelsesmønster kraftigt forandret idet du opdager, at du nu påvirkes af elektriske kræfter, og lige nu kigger du ned i en lille fordybning med hul i midten – din tur ind i massespektrometret er begyndt!
Efter at have ioniseret gassen og ledt den ind i selve massespektrometeret gennem en serie af simple elektrostatiske linser er ionerne nu klar til selve masseseparationen. Der findes flere måde at adskille de forskellige typer af gas, men fra navnet Time-Of-Flight kan man nok hurtigt gætte, at vi i dette apparat baserer os på et princip hvor vi adskiller de enkelte komponenter via deres flyvetid hen over en bestemt afstand.
Langsomt bevæger du dig ned mod hullet og ude på den anden side ser du, at du nu befinder dig i et egentlig ganske fredeligt område hvor du er fanget i en smal gyde med et tæt hønsenet til den ene side og en massiv kobberplade til den anden. Glad og tilfreds driver du langsomt gennem gyden indtil du pludselig overraskes af et kraftigt elektrisk felt som sender dig direkte gennem gitteret (pas på at ramme mellem hullerne, ellers bliver dit liv som ion ikke meget længere!).
Ude på den anden side af gitteret raser du nu af sted med en hastighed på 44km/s (24km/s hvis du er et xenon atom). Men ikke nok med, at du pludselig farer afsted, du befinder dig nu på en meget stejl rampe som uden hvil bliver ved med at forøge din hastighed til svimlende højder. Da du efter meget kort tid når en hastighed på 111km/s (61 for xenon) farer du igennem endnu et tæt vævet net og befinder dig nu i et meget langt rør. Der sker så mange ting på en gang, at du måske slet ikke bemærker, at du får et lille skub som drejer din bane så du nu flyver en lille smule skævt.
Pludselig synes din høje fart ikke længere at være et problem, her er fred og ingen fare og dit nye højhastighedsliv forekommer egentlig at være ganske ubekymret. Forude anes dog problemer; det er som om røret slutter i en lang stejl bakke, og det er ikke godt at vide hvad der er på den anden side… bekymringen skal dog hurtigt vise sig at være ubegrundet for bakken viser sig at være nøje afstemt så du roligt og kontrolleret ruller op indtil du et kort øjeblik ligger stille for derefter at rulle ned igen.
På turen ned bemærker du, at bakker i det elektriske felt er ægte gnidningsfri og du rammer derfor bunden af bakken med nøjagtigt samme hastighed som du kom med, og du farer igen med voldsom hastighed ud i røret. Glad og ubekymret fortsætter du turen tilbage, ikke siden du for mere end 15μ-sekunder siden mistede en elektron i en voldsom kollision har du oplevet noget rigtig ubehagelig og da du som atom har en uhyre kort hukommelse er den lille oplevelse for længst glemt.
Nej, livet er trygt og ubekymret på vej gennem det store og rummelig rør. Selv ikke da du i det fjerne aner endnu en bakke finder du grund til bekymring – du har prøvet det før og det plejer at gå fint. Men hov, vent, stop, stands!!!!! Alt, alt for sent indser du, at denne bakke er helt anderledes end sidst, denne gang er møder du ikke en blød bakke, men derimod en bakke så stejl, at du fra din vinkel ikke kan se om det faktisk er en væg. Inden du når at se dig om kolliderer du meget voldsomt med væggen, og faktisk rammer du så hårdt at du trænger mange atomlag ind i vægen – kaos råder og du kæmper for at forstå hvad der er sket men’s atomer og elektroner vælter rundt mellem hinanden rundt om dig.
Det sidste du ser er, at endnu flere af dine elektroner er blevet flået af i kollisionen – du ser dem i det fjerne tordne op ad den samme væg som du lige er ramt ind i og først da kommer du i tanke om, at hvad der er en massiv væg for en type ion er en rutsjebane for andre ioner – det hele handler om fortegn, men det kan være lige meget nu…
Når ionen er kommet sikkert gennem hele flight-tube og har ramt detektoren vil dens flyvetid fortælle os hvor tung den er, forudsat at vi kender geometrien af røret samt hvilke spændinger vi anvender til acceleration af ionerne. Hvis vi sender en lang række ioner ud på samme tur som vores ven og plotter alle flyvetiderne får vi en repræsentation af hvilke elementer som var til stedet i den prøve eller den gasstrøm vi ønsker at analysere. Svaret pa, hvad man så kan bruge sådan en analyse til, må vente til en anden gang, men her kommer i hvert fald et eksempel på hvordan sådan et spektrum kan se ud.
Skriv en kommentar hvis du er nysgerrig efter hvilket stof vi her kigger på: