I lørdags havde jeg en dårlig dag. Jeg kom til at besøge Politikens hjemmeside og fandt en historie med overskriften: “Kæmpe asteroide truer med at udrydde os i 2880” (og så var jeg desuden slemt forkølet – men det skal det ikke handle om her).
Nu kunne man tro at min dag blev ødelagt fordi jeg gik rundt og gruede for Jordens undergang om 800 år, men man må tro om igen. Næ, min dag var ødelagt fordi Politikens historie er helt igennem misledende, sensationalistisk og elendig.
Selvfølgelig ved jeg godt, at den stakkels journalist på Ritzau sikkert har fået 5 minutter lige inden deadline til at koge noget suppe på en historie fra britiske the Telegraph, som allerede dér var styg. Og jeg véd at den fremgangsmåde ikke er usædvanlig. Mit ærinde her er derfor heller ikke at hænge hverken journalisten, Ritzau, Politiken eller den konkrete historie ud som unikt dårlig.
Men miséren ER en ganske nydelig demonstration af, at fornuftig videnskabsformidling sjældent harmonerer med pressens krav om dagsaktualitet og at videnskabsjournalistik uden videnskabsjournalister ofte gør mere skade end gavn. Desuden gemmer der sig faktisk en rigtig god forskningshistorie nede under vrøvlet. Så hæng ved, kære læser. Der ér guld for enden af regnbuen, selvom det bliver langt og uden mange billeder, jeg lover det !
Hvorfor var dette her overhovedet en nyhed lige i lørdags ? Jo, det var det fordi en gruppe forskere ved University of Tennessee offentliggjorde en artikel i Nature i torsdags, som ledte til historien i Telegraph fredag og derfra til historien i Politiken lørdag.
Hvad var det så artiklen i Nature handlede om?
Det var ikke opdagelsen af asteroiden (29075) 1950 DA. Den blev, som navnet antyder, opdaget i 1950. Efter opdagelsen i 1950 blev asteroiden i øvrigt ikke set igen før år 2000. Det er slet ikke så nemt at se disse meget små objekter over de gigantiske afstande i Solsystemet.
Havde forskerne fra Tennessee beregnet, at risikoen for at asteroiden skulle ramme Jorden i 2880 var 1 i 300, som Politiken og Telegraph skrev ? Nej, det tal stammer fra en artikel i Science i 2002 kort efter genopdagelsen. Det seneste (og dermed gyldige) estimat, som er fra 2013, er 1 ud af 4000, så I kan ånde lettet op. Det tal, som Politiken og Telegraph vinkler på er 10 år gammelt og en faktor 10 forkert. Ups.
Radarbillede af asteroiden (29075) 1950 DA fra Arecibo radioteleskopet, 4. marts 2001.
1 ud af 4000 er stadig en betydelig risiko. 1950 DA ligger nummer 2 når man rangordner asteroider efter Palermo-skalaen over potentielle meteornedslag. Palermo-skalaen sammenligner risikoen for en kollision med én bestemt asteroide med den samlede risiko for at støde sammen med en asteroide af den givne størrelse i årene inden det potentielle nedslag.
DA 1950 har en værdi på -0.83 hvilket betyder at risikoen for en kollision med denne asteroide om 800 år er 10^(-0.83) = 14% af risikoen for at ramme en tilsvarende asteroide engang i løbet af de 800 år. Værdierne på Palermo-skalaen fortolkes med ord, sådan at tal under -2 betyder “ingen grund til ekstra bekymring”. Tal mellem -2 og 0 betyder “hold lige ekstra øje med denne her” (dem er der 3 af) og tal over 0 betyder “grund til bekymring” (dem er der ingen af). Så: Lad os holde lidt ekstra øje med denne her, men ikke ligge vågne om natten. Fint nok.
Men artiklen i Nature i torsdags handlede om noget helt andet. Og før jeg kommer til det må jeg lige en lille omvej, eller to.
(29075) 1950 DA roterer hurtigt om sig selv. Ét døgn er kun 2 timer og 7 minutter. Dét i sig selv var kendt og er ikke unikt, men gælder for mange små asteroider. Mange af dem roterer faktisk så hurtigt at deres svage tyngdekraft er SVAGERE end centrifugalkraften på ækvator. Med andre ord: Hvis du stod på ækvator ville du blive kastet ud i rummet af centrifugalkraften. Normalt fortolker man det sådan, at disse små asteroider er solide klippeblokke, som holdes sammen ikke af tyngdekraften men af de (meget stærkere) kræfter som nu engang holder en sten sammen. De elektriske kræfter (ionbindinger og kovalente bindinger) mellem atomerne i de forskellige mineraler, som danner stenen.
Mange ANDRE mindre asteroider, er derimod ikke solide klippeblokke, men såkaldte “rubble piles” eller “grusbunker”. Det er asteroider som engang er blevet splintret til klippeblokke, grus og støv ved sammenstød, og som nu kun holdes sammen af tyngdekraften. Disse grusbunker har ofte ganske høj porositet. 50% er ikke ualmindeligt, hvilket vil sige at halvdelen af asteroiden består af tomt rum mellem de forskellige klippeblokke, sten og sandskorn eller støvkorn.
Asteroiden 25143 Itokawa, observeret af den Japanske Hayabusa-rumsonde. Itokawa er én af mange asteroider, som er såkaldte “rubble piles” eller “grusbunker”.
Så her kommer nyheden i artiklen fra Nature: Forskerne fra Tennessee har bestemt massetætheden på (29075) 1950 DA og fundet 1.7 gram per kubikcentimeter. Det er på den ene side for lidt til at tyngdekraften alene kan holde sammen på asteroiden, men på den anden side også alt for lidt til at asteroiden kan være en solid sten. Den må være en grusbunke med porositet omkring 50%. Så asteroiden er alt for let til at være en solid klippeblok men roterer for hurtigt til at tyngdekraften kan holde sammen på den. Noget andet må hjælpe med til at holde sammen på den. Og hvad det “noget andet” er, det kommer vi til lige om lidt.
Men hov, vent, hvordan bestemmer man overhovedet massetætheden af en asteroide ? Normalt finder man massen af et objekt i Solsystemet ved at se på tyngdekraften FRA dette objekt på et andet, mindre objekt. Planeters masser kan beregnes ud fra deres måners bevægelser og en asteroides masse kan bestemmes hvis man for eksempel har en rumsonde i nærheden af den. Hvis man så også kender størrelsen (fra billeder) så har man massetætheden. MEN en asteroide som driver rundt helt for sig selv som denne hér gør er ikke så nem at få skovlen under. Der må mere kreative metoder til.
I dette tilfælde har man kigget på den såkaldte Yarkovsky effekt. Det er en svag kraft, som påvirker banen for små legemer i Solsystemet. Effekten opstår fordi asteroiden roterer hvilket skaber en asymmetrisk varmestråling i forhold til dens bevægelsesretning. Sagt på menneskesprog: Der er varmere om eftermiddagen end om formiddagen og der er varmere om aftenen efter solnedgang end om morgenen før solopgang. Der kommer altså mere varmestråling fra den varmere eftermiddag/aften-side end fra den koldere morgen/formiddag- side. Når asteroiden udsender varmestråling mærker den en uhyre svag kraft i den modsatte retning på grund af impulsbevarelsen. “Rekylet” fra varmestrålingen, simpelthen. Hvis asteroiden roterer sådan at aftensiden vender fremad i bevægelsesretningen vil den blive bremset ned en lillebitte smule af rekylet fra varmestrålingen. Omvendt, hvis den vender den koldere morgenside fremad vil den varmere aftenside skubbe lidt bagpå. Effekten er lille, men er ikke desto mindre kraftig nok til at være den mest betydelige kilde til usikkerhed når det handler om at bestemme banen 800 år frem i tiden.
Forskerne fra Tennessee har kigget på ændringer i asteroidens bane siden 1950 og sammenlignet med den modellerede Yarkovsky-effekt. Heri indgår asteroidens massetæthed både fordi den påvirker varmeledningsevnen og dermed varmestrålingen og fordi asteroidens reaktion på kraften afhænger af den samlede masse. Ud af denne analyse kom altså tallet 1.7 gram per kubikcentimeter for tætheden af (29075) 1950 AD. For let til at være en klippeblok men også for let til at være holdt sammen af tyngdekraften.
Hvad i alverden holder så sammen på den?
Politiken har svaret: “asteroiden udvikler nogle kræfter, der kaldes van der Walls (sic !), og som er med til at holde sammen på 1950 DA.”
Det er så på én gang rigtigt og helt forkert. For det første hedder de van der Waal, ikke van der Wall – men det kan jo smutte. For det andet er der ikke tale om nogle mystiske asteroide-kræfter, men om et helt generelt fænomen i fysisk kemi.
Van der Waals -kræfter er summen af de elektriske kræfter, der virker mellem molekyler, udover de kovalente bindinger og elektrostatiske kræfter fra ladede ioner. Altså summen af en række mindre elektriske effekter udover de stærke kræfter, som holder de enkelte molekyler eller faste stoffer sammen.
For eksempel: Nogle molekyler er polære, altså de er har lidt positiv elektrisk ladning i den ene ende og lidt negativ elektrisk ladning i den anden ende. Hvis to polære molekyler er i nærheden af hinanden og vender rigtigt (så den ene vender den negative ende mod den andens positive ende) så vil der være en tiltrækning mellem dem og det er et eksempel på en van der Waals kraft.
Den slags kræfter er medvirkende til at fint støv har en tendens til at klumpe sammen. Tænk på, hvordan mel klistrer til bordet eller kaffepulver til kanten af kaffedåsen. I et helt tørt miljø – som ude i rummet – er det lidt anderledes fordi der ikke er vand til at få støvet til at klumpe og klistre. Til gengæld kan der typisk være meget statisk elektricitet, hvilket ikke strengt taget er en van der Waals kraft, men potentielt er en anden vigtigt effekt, der får støv på en asteroide til at klistre.
Så, igen, på menneskesprog:
Asteroiden (29075) 1950 DA er for let til at være en solid sten, men roterer for hurtigt til at den kan holdes sammen af tyngdekraften. Vi formoder at dens overflade på ækvator er domineret af fint støv og at den svage elektriske tiltrækning mellem støvkornene er med til at holde sammen på den.
Asteroiden roterer som sagt en gang på 2 timer og 7 minutter. 2 timer og 12 minutter er grænsen for, hvornår tyngdekraften lige præcis kan holde sammen på den. Så den roterer kun en lille smule for hurtigt, hvilket understreger at disse elektriske kræfter i støvet ikke er særligt stærke.
En interessant krølle på historien er at asteroiders rotation kan accelerere over tid på grund af den såkaldte YORP effekt. Det er en variant af Yarkovsky effekten (YORP står for: Yarkovsky-O’Keefe-Radzievskii-Paddack) hvor asymmetrisk varmestråling fra en asteroide med ujævn form også kan øge dens rotation. Man kan altså forestille sig at (29075) 1950 DA var en grusbunke som gradvist roterede hurtigere og hurtigere indtil sten og klippeblokke på dens ækvator simpelthen løftedes af den og svævede lige så stille væk, mens støvet blev tilbage på grund af elektrisk tiltrækning mellem støvkorn.
Den sidste pointe er naturligvis at hvis en sådan asteroide kun lige nøjagtigt hænger sammen så skal der meget lidt til at sprænge den i stumper og stykker. Hvis man om 800 år får brug for at ændre dens bane skal man derfor tænke sig om før man skyder en raket ind i den og skal måske overveje alternative metoder til at ændre dens bane. Dette får Politiken også fuldstændig forvrøvlet til følgende, som slet ingen mening giver for mig:
“I stedet foreslår der, at forskerne prøver at udvikle metoder, der kan pille ved asteroidens overflade for at forstyrre de kræfter, der holder sammen på den. Hvis de kræfter forsvinder, går den i stykker af sig selv, lyder teorien.“
– pointen er netop at man måske ikke har lyst til at asteroiden går i stykker på vej mod Jorden men hellere vil holde den samlet og skubbe let til dens bane. Under alle omstændigheder er den generelle regel med hensyn til truslen fra asteroider at jo før man opdager dem, jo længere tid har man til at gøre noget ved det og jo mindre kraft behøver man påvirke med. Med 800 år skulle vi stå nogenlunde sikkert. Det er nok de asteroider, vi ikke har opdaget, som vi i højere grad skal bekymre os om.
Nu vil jeg gå hjem og pleje min forkølelse efter således at have sat tingene på plads. Det tog mig så også det meste af en arbejdsdag, hvilket en journalist på Ritzau jo ikke lige har en lørdag eftermiddag…
PS: Phil Plait fik også sin lørdag ødelagt